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Chapter 8

Beyond Brightfield: “Forgotten” Microscopic Modalities

Radek Pelc

Abstract

“Forgotten” microscopic modalities, devices, and accessories derived from or complementary to brightfield
microscopy are briefly surveyed. These include off-axis illumination, schlieren contrast, Abbe diffraction
apparatus, Rheinberg illumination, darkfield and phase-contrast microscopy combined, incident-
illumination microscopy, camera lucida, and comparison microscopy. Examples of their use are shown.
While most of them are no longer or only rarely available or used, they are still important for proper
understanding of image formation, contrast generation, and data interpretation in microscopy. In some
cases, they are superior to their more modern counterparts.

Key words Comparison microscope, Condenser, Conjugate planes, Darkfield, Incident illumination,
Köhler illumination, Objective, Rheinberg illumination, Schlieren contrast

1 Introduction

The late professor David John Hugh Cockayne (1942–2010),
former president of the International Federation of Societies for
Microscopy, claimed1 that it is vital to read the very original papers
in the field. Ernst Abbe (1840–1905) is, of course, a classical
example, as his main paper, although translated to English [1]
shortly after the German original [2] was published in 1873, is
very rarely quoted (forty times less often than the original accord-
ing to Google Scholar [earliest citation dated 1996]). A possible
explanation may be that over 98% of the English-speaking popula-
tion can also read German with confidence . . .Whatever is the case,
Colin J. R. Sheppard has recently done justice to Abbe in this sense
[3]. It is worth noting that a number of previously popular micro-
scopic modalities are either extinct or repeatedly “rediscovered,” as
exemplified in Subheading 2.

August Köhler suggested a new way of illuminating micro-
scopic specimens [4, 5] some time after the introduction by Ernst
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Abbe of a better condenser [6, 7]. Both of them worked jointly
with Carl Zeiss in the newly founded company, Carl Zeiss AG in
Jena, Germany. Köhler’s main aim was to facilitate photomicrogra-
phy so that homogeneous distribution of light intensity in the
viewing field is achieved. Previously, the so-called “critical” (Nel-
son) illumination was more popular, and a ribbon filament lamp
was the preferred light source [8].

The chief advantage of the Köhler illumination method is that
the light source does not have to be homogeneous for the viewing
field to be evenly bright, so that an ordinary light bulb can be used;
the tungsten wire coil is not seriously degrading the image (a
diffuser is sufficient to mitigate that). This can be achieved by
positioning the light source in the condenser front focal plane.
However, as this would result in exposing the specimen to excessive
heat, it is more practical to place the light source further away, in an
optically conjugate plane (Fig. 1); the collector lens (Fig. 2A, B)
serves this purpose. The light source in the microscope is typically
fixed, and optimal condenser position must be adjusted for each
objective lens. This adjustment when changing objectives was easier
in the so-called pancratic (“all-mighty”) condenser that used to be
part of Zeiss microscopes (e.g., NfpK or Amplival); the condenser
position did not need to be vertically changed, and an internal
zooming system was used to achieve Köhler illumination.

2 Off-Axis Illumination and Schlieren (Modulation) Contrast

An important implication of the Köhler illumination principle is
that the condenser can be partly obstructed at its front focal plane
(aperture diaphragm level), without introducing luminance inho-
mogeneity into the image. In a microscope properly adjusted for
Köhler illumination, and its condenser diaphragm fully open (ide-
ally matching the numerical aperture [NA] of the objective), an
axially symmetrical light beam illuminates the specimen. Nonab-
sorbing objects such as unstained living cells are rendered in mini-
mal contrast, and very thin ones such as filopodia or lamellipodia
are hardly visible.

Decentering the condenser diaphragm, or asymmetrically
obstructing it results in contrast enhancement. An example is
shown in Fig. 2C, D obtained in a slightly different way, in that
an accessory lens (rather than the diaphragm) of the condenser is
offset. The contrast enhancement is greater in optical thicker
objects. Condensers in microscopes made till ~1960s by Carl
Zeiss (e.g., NfpK from 1960s) and Meopta (e.g., C36Bi) were
equipped with a laterally shifting diaphragm (Fig. 2E) to achieve
this effect [9, 10]. In author’s experience, however, a shifting
straight-edge diaphragm (Fig. 2F) is more efficient, and available

226 Radek Pelc



in the RCH condenser2 made by Lambda Praha (originally Meopta,
Czechoslovakia). Examples of its use may be found elsewhere
[11, 12].

Image contrast can be further improved by employing another
asymmetric diaphragm in the objective back focal plane (optically
conjugate with the condenser diaphragm), the so-called schlieren
diaphragm or modulator [13]. As surveyed elsewhere [11] this
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lamp

Lamp 
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Condenser 
focusing

Camera
Primary image plane

Exit pupil of the eyepiece

Specimen plane
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Objective back focal plane

Condenser front focal plane
(aperture diaphragm)

Primary image plane
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CONDENSER FOCUSING AND 
CENTERING INCORRECT

CONDENSER CENTERING 
INCORRECT

CONDENSER
PROPERLY ADJUSTED 

A

Fig. 1 Optically conjugate planes of an upright microscope. (A) Imaging and aperture planes are marked in
blue and red, respectively. Adapted from Ref. [39] by permission of© Elsevier. Note the original designation of
the “field diaphragm” was “field-of-view diaphragm” (Sehfeldblende in German). The framed text is repro-
duced from Ref. [5]. (B–D) Field diaphragm as viewed through the eyepiece while centering the condenser
(images by Dr. Lisa Cameron); see Appendix 2 for details

2Relief contrast after Hostounský. Dr. Zdeněk Hostounský (1925-2013) was a protozoologist and insect
pathologist at Czechoslovak Academy of Sciences in Prague, and a founding member of The Stentor Institute.
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Fig. 2 Adjustment of a microscope for Köhler and off-axis illumination. (A) Original diagram adapted from Refs.
[4], [5]; copyright expired 70 years after author’s death (August Köhler, 1866–1948). Köhler’s portrait is as
published by Zeiss Microscopy (Jena, Germany). AD Aperture diaphragm (in condenser), CL Collector lens, Con
Condenser, FD Field diaphragm, ID Iris diaphragm (inside objective), Obj Objective lens. (B) Field (imaging) and
aperture planes. Adapted from Ref. [40]; the origin of this drawing (recently shown in Ref. [41]) may be traced
to Carl Zeiss materials at least 75 years old [10]. (C, D) Off-axis (oblique) illumination obtained by offsetting a
condenser accessory lens. Reproduced from Ref. [42]. C Condenser aperture diaphragm viewed through a
centering telescope. D Unstained protozoon (Peranema trichophorum) and its separately contrast-optimized
flagellum, otherwise hardly visible in axially symmetrical illumination. (E, F) Off-axis (oblique) illumination
setups utilizing a shifting diaphragm. E When needed, the shifting-iris diaphragm is swung into a working
position under the condenser. Reproduced from Ref. [9]. F Dedicated off-axis illumination condenser with a
shifting-edge diaphragm. Reproduced from Ref. [12]
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simple modality was “rediscovered” approx. every 25 years since it
was first published [14], most likely because the papers describing it
usually lacked micrographs. Eventually, it matured into Hoffman
modulation contrast [15], a direct competitor of a noticeably more
costly differential interference contrast (DIC Nomarski) invented
more than 20 years earlier [16]. Single-sideband edge-enhance-
ment microscopy represents yet another variant [17, 18].

At this point, it should be emphasized that in images of greater
optical thickness such as cell clusters, bigger cells or tissue replicas
the setup employing no modulator (i.e., off-axis illumination) is
more suitable (data not shown). In that case the objective aperture
fulfills the role of a modulator to some extent [19] when the
condenser diaphragm is open a bit more than required by the
numerical aperture of the objective. This represents a slight depar-
ture from the optimal Köhler illumination (i.e., condenser dia-
phragm setting exactly matching the numerical aperture of the
objective) as stray light may start contributing to image formation.
However, this is usually more than compensated for by improved
image contrast. It should be noted that the improvement is not
very significant as the objective aperture is circular rather than
straight (cf. the text above on the condenser shifting diaphragms
(Fig. 2E, F)).

3 Abbe Diffraction Apparatus

The abovementioned modulation (schlieren) contrast relies on
selectively filtering certain diffraction maxima (orders) at the objec-
tive back focal plane, with the aim to improve image contrast. In
brightfield microscopy, there is no filtering. Darkfield microscopy,
on the other hand, represents the other extreme, in that all direct
(undiffracted) light, also referred to as the 0th order diffraction
component, is blocked. Examples are shown in Subheadings 4
and 5.

A classical (the simplest) example of the importance of diffrac-
tive phenomena in microscopic image formation is shown in Figs. 3
and 4. Preventing the 1st and higher diffractive orders (maxima)
from contributing to image formation results in complete disap-
pearance from images of the structures (periodically spaced dots)
represented by them (Fig. 3B). Likewise, merely increasing the
illumination wavelength λ (e.g., by switching from blue to red
light) renders previously visible structures invisible (Fig. 3C, D) as
resolution is inversely proportional to wavelength (resolution
limit ¼ λ/2NA [1, 2]).

The first of these phenomena can be demonstrated with the aid
of an objective with a built-in iris diaphragm. For example, the
Nikon �100/0.50�1.30 objective offers the option to gradually
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reduce its numerical aperture from 1.30 down to 0.50 (resolution
worsens 1.30/0.50 ¼ 2.6-fold).

In order to convince the scientific community that the diffrac-
tion theory of image formation [1, 2] is indeed valid [20] the
so-called Abbe Diffraction Apparatus was designed, and later also
made commercially available by Carl Zeiss [8, 21]. Nowadays, it
may be occasionally found on eBay. Its components are shown in
Figs. 4 and 5, including the effects on images of passing or blocking
specific diffraction maxima (Fig. 4). False structures (lines nonexis-
tent in the specimen) appear in the image if only the 1st diffraction
maxima are blocked because the spatial frequency (line density)
seemingly increases. One may say that the 0th and 2nd diffraction
order rays “do not know” the 1st diffraction order rays are missing,
and interfere with each other as usual, but this time forming a
nonrealistic image.

Similar demonstrations have been described [22] and illu-
strated [23] in greater detail elsewhere, most extensively by Kurt
Michel [24]. They would be surely of great benefit in microscopy
training courses. Earlier, the equipment was referred to as the
“Abbe Demonstration Microscope” [8] or the “Pulfrich-Abbe

OPENING OF THE 
OBJECTIVE APERTURE

BLOCKED 
1st DIFFRACTION MAXIMA

A B C D

NA = 1.40 (full)
Green light

NA = 0.40
Green light

NA = 0.80
Blue light

NA = 0.80
Red light

2 µm

0th

1st

1st
1st

1st1st

1st
0th

1st

1st

1st

1st1st

1st

0th

Fig. 3 Diffractive nature of microscopic image formation. Diatom (Pleurosigma angulatum) viewed with a high-
resolution, oil-immersion objective (�60/0.40 � 1.40) fitted with an iris diaphragm making it possible to
adjust its numerical aperture anywhere between maximum (1.40 in A) and minimum (0.40 in B); an
intermediate value (0.80) is shown in C and D. (A, C) Inclusion of the 1st order diffraction maxima makes
the periodic structure visible. (B, D) Exclusion of the 1st order diffraction maxima renders the periodic
structure invisible. (C, D) Dependence of resolution on wavelength: blue light resolves the structure, red
light does not. Adapted from Ref. [43]
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DemonstrationMicroscope” [25]. Please note that the phase plates
shown in Fig. 5 were not included in the early models as phase-
contrast microscopy was only invented in early 1930s.

4 Rheinberg Illumination

Until the invention of phase-contrast microscopy [26] darkfield
and schlieren microscopy were dominating the realm of imaging
unstained (nonabsorbing) objects. A modality combining darkfield
and brightfield microscopy became known as Rheinberg illumina-
tion [27]. It can render objects under investigation in a color of
choice, against a background of another color. This is achieved by
using concentric color filters (Fig. 6) inserted into the condenser
filter holder. If the central disc is black and sufficiently large the
brightfield component is not present, and a darkfield image in a
color of choice is obtained (Fig. 6C) [28].

A dedicated condenser called “Mikropolychromar” (Fig. 6A)
used to be manufactured by Carl Zeiss since 1933 [8], and found its

NO 
IMAGE

REALISTIC 
IMAGE

FALSE 
IMAGE

IMAGE PLANE

CONDENSER
front focal plane
diaphragm

OBJECTIVE
back focal plane 
diaphragm

0th only -2nd, 0th, +2nd
DIFFRACTION 
MAXIMA passed-1st, 0th, +1stDIFFRACTION FUNNEL

S1

Fig. 4 Abbe diffraction apparatus in action. This simple device used to be commercially available from Carl
Zeiss at least since 1937. The objective back focal plane diaphragms are inserted into a slider (S1) in the
“diffraction funnel” fitted above the objective of an upright microscope. Depending on which diffraction
maxima are allowed to pass the image looks different (0th order maximum yields no image at all, passing only
the second order maxima (i.e., blocking the first order one) results in twice higher density of the lines in the
image (i.e., every other line in the image is an artifact). A hypothetical object consisting of vertical parallel lines
is considered here, similar to those engraved in the “Diffraction Plate” that is part of the original equipment
(Fig. 5). The diffraction funnel is reprinted from Carl Zeiss catalogue, “Der Diffraktions-Apparat nach Abbe”
(Druckschrift “Mikro 11-432-1” dated 1940)

“Forgotten” Microscopic Modalities 231



use, for example, in studying intracellular motility [29]. Eastman-
Kodak Co. was supplying Wratten-Rheinberg filter sets for this
microscope [8, 30]. Thread cells of hagfish slime gland [31, 32]
could be conveniently visualized under Rheinberg illumination
using custom-made color filters (Fig. 6D). It should be noted
though that the Mikropolychromar is in fact a simple condenser,
not a dedicated darkfield one, and as such only performs well at
smaller magnifications. An excellent recent review about Rheinberg
illumination is available [33].

A dedicated darkfield condenser capable of mixing brightfield
and darkfield images was also made and referred to as the “Quick-
Change-Over” condenser (Fig. 7A) [30], implying the ease of
switching between brightfield and darkfield. The author has not
encountered any images arising from its use. An interesting

LAMPHOUSE 
SLIT

SLIDERS Eyepiece 
pinhole 

(‘diopter’)
Substage 
diffuser

Clip-M

Eyepiece
x16 DIFFRACTION PLATE

(testing specimen)

Achromatic 
objective 
x6.3/0.20

D-Fun
Ground 
glass 
insert

S1 S2

Clip-M = Clip-on magnifier
D-Fun = Diffraction funnel

CONDENSER

COLOR FILTERS

Fig. 5 Abbe diffraction apparatus at rest. The “diffraction plate” hosts microscopic gratings as testing objects.
The red box highlights (left) five aperture stops (masks), and (right) two phase (“retardation”) plates and
corresponding substage condenser diaphragms. Each of the masks and phase plates fits in the S1 slider
inserted into the diffraction funnel (D-Fun) mounted above an objective. The S2 slider is fitted with a variable
diaphragm, and enables experiments shown in Fig. 3 even if the objective is not fitted with the iris diaphragm.
To directly examine the (intermediate) image of the specimen the eyepiece may be replaced with a ground-
glass insert. The diffraction pattern generated by the specimen is inspected either with a clip-on magnifier
(Clip-M) above the eyepiece (with an effect of either a centering [“phase”] telescope or Bertrand lens) or with
an eyepiece pinhole (“diopter”). Details may be found in Ref. [21]. Image (unmarked) reprinted by permission
of © The Trustees of the National Museums of Scotland (Edinburgh, UK) where this piece of equipment (made
ca. 1970) is held
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Fig. 6 Rheinberg illumination. Color discs shown at the bottom (A-D) were used to obtain the images. (A) The
Mikropolychromar condenser (aplanatic) capable of mixing brightfield and darkfield images. As it is not a
dedicated darkfield condenser it is suitable for low-power objectives only (cf. Fig. 7a). Reproduced from Carl
Zeiss catalogue, “Mikropolychromar” (Druckschrift “Mikro 493/II” from 1938). (B) Lens-cleaning paper.
Original magnification �50, image width ca. 2 mm. Courtesy of © Stephen W. Downing (University of
Minnesota Medical School-Duluth Campus [Duluth, MN, USA]), originally presented in a 1980 photomicrogra-
phy competition (https://www.nikonsmallworld.com/people/steve-downing). (C) Proboscis of a house cricket
(Acheta domesticus) in pure darkfield (the brightfield component is blocked). Courtesy of © Stefano Barone
(Diatom Lab, Italy; www.diatomshop.com, www.testslides.com). Image originally presented in a 2014
photomicrography competition (https://www.nikonsmallworld.com/people/stefano-barone), and a similar one
elsewhere [28]. (D) Two thread cells of a hagfish slime gland, with the threads unwinding. Corresponding
brightfield (BF) and SEM images are shown. Courtesy of © Stephen W. Downing (University of Minnesota
Medical School-Duluth Campus [Duluth, MN, USA])
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accessory of darkfield condensers is the so-called Traviss expanding
stop, essentially an iris diaphragm working in reverse (Fig. 7B).
Jointly with the standard iris diaphragm, light annulus of any
diameter and thickness can be produced. This is helpful in correctly
adjusting darkfield illumination [34]. The Traviss stop used to be
manufactured by W. Watson & Sons (London) [8].

5 Heine Condenser and Incident Illumination

The examples shown in the previous section (Rheinberg illumina-
tion) illustrate the capabilities of darkfield microscopy. A more
advanced option was available in the form of the Heine condenser
(Fig. 8A, B). This was a variant of the cardioid condenser (the shape
of its mirror is derived from the cardioid curve), that is, a dedicated
darkfield condenser performing well not only at small magnifica-
tions. Additionally, it enabled easy switching not only to brightfield
but also to phase-contrast imaging [35, 36]. The cardioid con-
denser alone (inset in Fig. 8B), that is, without the phase-contrast
modality add-on, makes it possible to visualize, for example, single
unstained microtubules (Fig. 8C), and to follow their dynamic
instability (Fig. 8D). Darkfield imaging provides better contrast in
images of single microtubules than other suitable label-free mod-
alities such as interferometric scattering [37] or interference reflec-
tion [38] microscopy.

c c
p p

D

ID ID

ED

BF

DFDF

BF

Control arm

TRAVISS 
STOP
(expanding 
diaphragm, 
ED)

W. Watson 
& Sons

(London)

Lamelae

A B

Fig. 7 Darkfield microscopy aided by Traviss stop. (A) Dedicated darkfield condenser for mixing darkfield and
brightfield illumination. It used to be manufactured by Leitz, and marketed as the “Quick-Change-Over”
condenser. BF Brightfield. C Central rays for darkfield illumination. D Diffusely reflecting surface generating
brightfield illumination. DF Darkfield. ED Expanding diaphragm (Traviss stop). ID Iris (aperture) diaphragm.
p Peripheral rays for brightfield illumination. (B) The Traviss stop made the use of a darkfield condenser more
straightforward, even though originally not part of the type shown here. Image A is adapted from Ref.
[10]. Image B is based on Ref. [34] (copyright expired 70 years after author’s death; Edmund J. Spitta,
1853–1921 [20]), as adapted in Ref. [44] (reprinted by permission of © Macmillan Magazines/Springer)
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More recently, a revival of the combined illumination scheme
has been presented in an incident illumination setup (Fig. 9) better
suited to inspect, for example, tissue surfaces. As it also provides
darkfield and phase-contrast images, complementary image infor-
mation can be conveniently obtained (Fig. 9B, C). It is inspired by
the “Ultropak” device (Leitz) which did not offer the phase-
contrast modality.

BRIGHT 
FIELD

PHASE 
CONTRAST

BRIGHT 
FIELD

DARK 
FIELD

DARK 
FIELD

Z = phase ring L’ = illuminating light

HEINE CONDENSER

cardioid 
condenser

Distance (µm) of microtubule tip 
from a reference point

2

4

6

0 2010 Time (min)
A
C

B
D

5
µ

m
single microtubule

Fig. 8 Heine condenser. (A, B) The Heine condenser is based on the cardioid (i.e., dedicated darkfield)
condenser, and makes it possible to gradually change from one modality to another (brightfield, darkfield and
phase contrast). The main image is reproduced from Leitz catalogue № 51.3-5a/Engl.–X/60/FY/L (early
1950s). The photograph of the condenser (complete with a screwable lens for use of immersion oil) was taken
by Peter Höbel (Erlangen, Germany; http://www.mikroskopie-ph.de/index-Heine.html). The ray diagram (bot-
tom right) is reproduced from Ref. [10]. (C, D) Time-lapse imaging of a single unstained microtubule by
darkfield microscopy, using the cardioid condenser (inset in B). Microtubule growth and shortening (dynamic
instability) can be followed; microtubule tip is the plus end. Adapted from Ref. [45] by permission of © Nature
Publishing Group (Springer)
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6 Camera Lucida and Comparison Microscopy

The drawing attachment (tube) often referred to as camera lucida,
literally “light chamber,” used to be commonplace in microscopy
laboratories even when photomicrography was already widely used.
When using it, the microscopist is simultaneously viewing the cell
under the microscope, and his/her drawing of that cell (Fig. 10A).
Semi-transparent mirror (beam splitter) project the drawing into
the eyepieces. Naturally, both images should be of comparable
brightness, and built-in rotatable polarizing filters, for example, in
camera lucida made by Carl Zeiss (“Zeichenapparat”) facilitate
that.

Nowadays, software is available to skeletonize cell images, that
is, to convert their grayscale representations (typically 8-bit, 0 to
255) to line-drawing type images (one-bit models). Nevertheless, it
is still often more convenient to draw the images manually with
camera lucida (Fig. 10B). The drawings of neurons by Ramón y
Cajal (1852–1934) of course represent a classical example.3

A need often arises to view two similar scenes (specimens)
simultaneously. For this purpose, a so-called comparison micro-
scope may be conveniently employed. It in fact consists of two
separate microscopes connected with a special (dual) eyepiece

B
BRIGHT 
FIELD

Phase 
contrast

~100 µm C

DARK FIELD

Specimen

A

Diaphragm
Bright field 
Phase contrast

ULTROPAK

Phase plate

Dark field
Phase contrast

Phase plate

Fig. 9 Incident illumination. (A) Vertical illuminators inspired by the “Ultropak” (Leitz) which was not fitted with
a phase plate. Various modalities (color-coded in the image) and their combinations may be obtained,
depending on the annular diaphragm(s) used (small, large or both). The drawings are adapted from Refs.
[46, 47] by permission of © Cambridge University Press. The photograph is reproduced from Leitz catalogue
№ 513-36a/Engl (1965). (B, C) Filamentous algae in incident illumination; note complementary rendering in
brightfield, darkfield, and phase-contrast. Reprinted from Ref. [46] by permission of © Cambridge University
Press

3 The Beautiful Brain (Abrams Books 2017, ISBN: 9781419722271)
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tube capable of merging the two images into one (Fig. 11A). An
example of comparison microscopy is shown in Fig. 11B in which
the retina of wild-type and mutant zebrafish larvae is presented.

As digital images can be easily acquired and displayed, the
comparison eyepiece dating to at least 75 years ago [10] is

OLM

B

A

Drawing 
projected to 
eyepieces

Beam 
splitter

Fig. 10 Camera lucida or drawing attachment. (A) Example of fitting to Wild M20-EB microscope. Adapted
from Ref. [48] (© Ian Walker). (B) Camera lucida drawings of freshly isolated chick retina photoreceptor cells
(cones) aligned by the outer limiting membrane (OLM). The color spots are oil droplets acting as color filters
aiding color vision. Adapted from Ref. [49] (©López-López et al.)

A 50 µmB

WILD-TYPE MUTANT
UV cones
Rods

EYEPIECE

Microscope #1 Microscope #2

A

Fig. 11 Comparison microscopy. (A) The comparison eyepiece fits two microscopes working in concert. The
Zeiss drawing is reproduced from Ref. [10]. The optical diagram was drawn by Tamás Szőcs (https://en.
wikipedia.org/wiki/Comparison_microscope). (B) An example of use. As the author of the present chapter is
not in possession of the comparison eyepiece separately obtained images are shown: Retinae of zebrafish
larvae, wild-type versus lots-of-rods mutant (lorp25bbt). Reproduced from Ref. [50] by permission of © Natl.
Acad. Sci. USA
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nowadays hardly encountered in biological laboratories. However,
it is still useful in situations when only one digital camera is avail-
able, or when routine comparative observations are made. Indeed,
dedicated comparison microscopes, inseparable from each other,
have been commercially available at least since 1935. Examples of
situations where comparative microscopy is useful include patho-
logical, biological, forensic, and industrial laboratories specializing,
for example, in the following [8]:

1. Examining tissue in health and disease

2. Identifying powdered adulterated drugs

3. Biological systematics (inspecting unknown vs. type specimen)

4. Identifying crystals, hair, or textile fibers from a crime scene

5. Comparing optical performance of two microscopes
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Appendix 1 (Hands-on Demonstration)

Diffraction and Resolution
Inspect a diatom specimen5 using an objective fitted with a

built-in iris diaphragm (e.g., Nikon �100/0.50 � 1.30) at differ-
ent settings (i.e., different effective numerical aperture, NA). In this
way, it is possible to artificially reduce the objective’s resolving
power to the extent (NA ¼ 0.40 in our example) that the finest
details in the diatom image completely disappear (Fig. 3B).

Alternatively, use an ordinary objective (having no iris dia-
phragm) jointly with a diffraction funnel fitted under the ocular
head of an upright microscope. Insert S2 slider (with a built-in iris
diaphragm) into the funnel (Figs. 4 and 5).

Inspect the objective back focal plane using a centering
(“phase”) telescope or Bertrand lens6 to monitor the diffraction
maxima of different orders while closing and opening the dia-
phragm in (or above) the objective lens. Typically, 0th and 1st

4CZ.02.1.01/0.0/0.0/16_019/0000729
5Available, for example, from Diatom Lab (www.diatomshop.com, www.testslides.com)
6The Bertrand lens is an extra focusable lens that, when inserted into the optical path, works in conjunction with
the eyepiece to form a small telescope to give a magnified view of the objective back focal plane.
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order maxima will be visible (the former representing direct or
undiffracted light).

Note that the diffraction patterns may be clearly observed only
with the condenser aperture diaphragm closed as much as possible
(down to a “pinhole”).

Illuminate the diatom specimen with light of different wave-
lengths. Blue light (shorter wavelength, ca. 450 nm) is more likely
to resolve fine details than red light, ca. 700 nm) as the resolving
power is inversely proportional to NA. For this effect to be suffi-
ciently prominent, the objective (or S2 slider) iris controlling the
effective NA needs to be set to an appropriate value (0.80 in the
example shown in Fig. 3C, D), as checked by viewing the diffrac-
tion patterns in the objective back focal plane.

Be aware that different diatom species feature structures of
different periodicities.

Appendix 2 (Exercise)

Setting Köhler Illumination
(minor adaptation of a text originally written by Dr. Lisa

Cameron, Light Microscopy Core Facility, Duke University, Dur-
ham, NC, USA)

Following is a step-by-step protocol for Köhler illumination
with transmitted light. An interactive version is also available at the
online Microscopy U(niversity)7 and elsewhere8. For information
on focusing the light source, please see the “Focusing the light
source” section further below.

First, open all diaphragms. Raise the condenser to its highest
point (on an upright microscope). Put a well-stained specimen on
the stage, and inspect it with a low power (10�) objective.

Focus the objective lens to obtain a sharp image of the speci-
men by using the coarse and fine focus controls. This first step sets
the correct relationship between the specimen and objective lens.

On a binocular microscope, each user may need to adjust the
eyepieces for their own eyes for optimal focus. At least one eyepiece
will have an adjustment collar. Use one eye to look down the
microscope and focus on some detail in the specimen while keeping
the eye which uses the eyepiece with adjustable collar closed. Then
switch and use the other eye. Turn the adjustable eyepiece collar to
focus the same detail in the image as sharp as before. This procedure
is referred to as diopter adjustment and is recommended every time
a microscope is used, for the sake of microscopist’s visual comfort.

7 https://www.microscopyu.com/tutorials/kohler
8 https://micro.magnet.fsu.edu/optics/timeline/people/kohler.html
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Setting Köhler illumination is possible without it if using one
eye only.

Focus the condenser by first closing the illuminated field dia-
phragm and then adjust the height of the condenser with the
condenser focus knob until a sharp image of the field diaphragm
is seen superimposed on the image of the specimen (Fig. 1C). Make
sure that the condenser diaphragm is wide open. This adjustment
sets the correct relationship between the condenser lens and the
specimen. If the microscope has an Abbe condenser, this image will
likely have a fringe of color around the field aperture.

Center the condenser lens. To do this, make the image of the
field diaphragm concentric with the field of view (Fig. 1D) using
the condenser centering screws. This adjustment makes the optical
axis of the condenser lens coincide with that of the microscope as
defined by the field diaphragm and the objective lens.

Adjust the area of the field that is illuminated. Open the field
diaphragm until its image is just outside the field of view; readjust
the condenser centering if necessary (as you open it). This ensures
that illumination falls only on the area of specimen within the field
of view, and that the diameter of the primary image is only a little
larger than the field-limiting diaphragm as seen by the eyepiece.
This prevents light from falling on the internal walls of the micro-
scope to be scattered to produce hot spots and haze, reducing
contrast in the final image.

Adjust the aperture diaphragm (illuminating aperture) in the
condenser. To do this, remove the eyepiece, or turn the Bertrand
lens into position if available—look down the microscope tube
from ca. 100 mm above the tube, and observe the back focal
plane of the objective, the disc of light at the base of the tube.
More conveniently, use a centering (“phase”) telescope in place of
the eyepiece, in the same way as during adjustment of the annular
diaphragm for phase-contrast imaging. Close the aperture dia-
phragm until the image of the iris is approximately 70–80% of the
viewing field (the aperture of the objective). Replace the eyepiece
(or remove the Bertrand lens). The working (effective) aperture of
the condenser is now slightly smaller than the aperture of the
objective lens. Do not close the diaphragm too far; this will cause
a serious deterioration in the quality of the image.

Adjust the brightness of illumination using the control on the
lamp power supply, or by inserting neutral density filter(s). These
are usually found along the base of the microscope between the
lamp and the field diaphragm. The microscope optical adjustments
or diaphragms should not be used to control brightness. This will
adversely affect the quality of the image. For instance, if the con-
denser diaphragm is closed too much, the image will appear too
contrasty, as refractile structures will be highlighted too much due
to diffraction effects; and with it wide open, there will be glare due
to stray light (internal reflections). The resolution is poor in both.

240 Radek Pelc



In a microscope with absolutely no internal reflections the setting is
optimal when the effective numerical aperture of the condenser
(adjustable by its diaphragm) matches the NA of objective in use.
As such microscopes do not exist in reality the abovementioned
setting of ca. 70–80% is recommended. Image contrast is slightly
improved yet the diffraction artifacts thus introduced are minimal.

For a higher power objective:
Rotate the nosepiece to the 40� dry objective. Owing to parfocal-
ity of objective design, the 40� objective should be almost in focus
after aligning the microscope for 10�; it was not the case in very old
microscopes.

As before, focus and center the image of the field diaphragm
using the condenser focus knob and the condenser centering
knobs. The aperture of the field diaphragm will need to be
readjusted.

Remove an eyepiece (ideally replace it with the centering
[“phase”] telescope), or use the Bertrand lens to observe the back
focal plane of the objective. Notice that the area illuminated for the
low power objective is much smaller than the diameter of the back
aperture of the 40� objective.

Adjust the condenser diaphragm so that the effective NA of the
condenser is about the same as the objective NA.

For a high-power oil immersion objective:
Rotate the nosepiece so that a high-power oil immersion objective
is near-vertical. Just before it is clicked into place, stop and add oil
to the coverslip, as close as possible to the optical axis (light beam
coming from condenser prealigned at smaller magnifications, see
above). Be sure the oil droplet does not have any bubbles. Use
immersion oil provided by the microscope manufacturer, as there
are some slight differences. Ideally, the refractive index of the oil,
coverslip, and objective lenses should be the same.

Click the oil immersion objective into place. The space between
the front lens of the objective and the coverslip should now be filled
with oil.

Remove an eyepiece (ideally replace it with the centering
[“phase”] telescope) or use the Bertrand lens to view the back
aperture of the objective. Open the condenser diaphragm to almost
fill the objective aperture.

Replace the eyepiece (or remove the Bertrand lens) and observe
the specimen. Adjust the field diaphragm until the edge just
matches the field of view. Strictly speaking, the condenser should
again be readjusted as above (focus and centering). However,
switching from �40 to �100 objective will rarely misalign the
condenser beyond tolerable limit.
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Focusing the light source:
Remove the diffuser from the lamp housing or along the base of the
microscope stand, if possible, in order to see bulb and filament.
Lamp illumination should fill most of the front aperture of the
condenser. Put a sheet of lens paper on the specimen stage to help
visualize the area of illumination. Focus light on the lens paper by
moving the lamp-focusing knob. Then remove the eyepiece (ideally
replace it with the centering [“phase”] telescope) or insert the
Bertrand lens to view the back focal plane of the objective. Be
sure the lamp filament is centered and focused in the plane of the
condenser diaphragm. Adjust the collector lens on the lamp
housing.

N.B.: Many student microscopes and more recently released
modern research ones do not have illumination bulb adjustments,
but are designed to deliver even illumination.
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